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Research Article

Estrogen Metabolism and Exposure in a
Genotypic–Phenotypic Model for Breast Cancer
Risk Prediction

Philip S. Crooke1, Christina Justenhoven5, Hiltrud Brauch5, and for the GENICA Consortium;
Sheila Dawling2, Nady Roodi2, Kathryn S. P. Higginbotham3, W. Dale Plummer4, Peggy A. Schuyler4,
Melinda E. Sanders2, David L. Page2, Jeffrey R. Smith3, William D. Dupont4, and Fritz F. Parl2

Abstract
Background: Current models of breast cancer risk prediction do not directly reflect mammary estrogen

metabolism or genetic variability in exposure to carcinogenic estrogen metabolites.

Methods: We developed a model that simulates the kinetic effect of genetic variants of the enzymes

CYP1A1, CYP1B1, and COMT on the production of the main carcinogenic estrogen metabolite, 4-hydroxy-

estradiol (4-OHE2), expressed as area under the curve metric (4-OHE2-AUC). The model also incorporates

phenotypic factors (age, body mass index, hormone replacement therapy, oral contraceptives, and family

history), which plausibly influence estrogenmetabolism and the production of 4-OHE2.We applied themodel

to two independent, population-based breast cancer case–control groups, the German GENICA study

(967 cases, 971 controls) and the Nashville Breast Cohort (NBC; 465 cases, 885 controls).

Results: In the GENICA study, premenopausal women at the 90th percentile of 4-OHE2-AUC among

control subjects had a risk of breast cancer that was 2.30 times that of women at the 10th control 4-OHE2-AUC

percentile (95% CI: 1.7–3.2, P ¼ 2.9 � 10�7). This relative risk was 1.89 (95% CI: 1.5–2.4, P ¼ 2.2 � 10�8) in
postmenopausal women. In the NBC, this relative risk in postmenopausal women was 1.81 (95% CI: 1.3–2.6,

P¼ 7.6� 10�4), which increased to 1.83 (95% CI: 1.4–2.3, P¼ 9.5� 10�7) when a history of proliferative breast

disease was included in the model.

Conclusions: The model combines genotypic and phenotypic factors involved in carcinogenic estrogen

metabolite production and cumulative estrogen exposure to predict breast cancer risk.

Impact: The estrogen carcinogenesis–based model has the potential to provide personalized risk estimates.

Cancer Epidemiol Biomarkers Prev; 20(7); 1502–15. �2011 AACR.

Introduction

Abundant experimental and epidemiologic evidence
has implicated estrogens as prime risk factors for the
development of breast cancer (1–4). Experiments on
estrogen metabolism (5–7), formation of DNA adducts
(8, 9), mutagenicity (10, 11), cell transformation (12, 13),
and carcinogenicity (14, 15) have implicated certain
estrogen metabolites, especially the catechol estrogen
4-hydroxyestradiol (4-OHE2; Fig. 1) to react with DNA

via its quinone, causing mutations and initiating cancer.
Estrogen-DNA adducts have been detected in normal
and malignant human breast tissues (16–18) and we
have provided direct experimental evidence that oxida-
tive metabolism of 17b-estradiol (E2) leads to the for-
mation of 4-OHE2 and deoxyribonucleoside adducts
(19). Epidemiologic studies have indicated that breast
cancer risk is higher in women with early menarche and
late menopause, who have longer exposure to estrogens
(20). Therefore, current models of breast cancer risk
prediction are mainly based on cumulative estrogen
exposure and incorporate factors such as current age,
age at menarche, and age at first live birth (21–26).
While these traditional exposure data are valuable in
risk calculation, they do not directly reflect mammary
estrogen metabolism. Furthermore, current models do
not address genetic variability between women in expo-
sure to carcinogenic estrogen metabolites, including
catechols and quinones.

We previously sought to address these limitations by
developing a kinetic–genetic model of estrogen exposure
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in relation to breast cancer risk prediction (27). Themodel
incorporates the main components of mammary estrogen
metabolism, that is, the parent hormone E2 and the
principal enzymes expressed in breast tissue, the phase
I cytochrome P450 (CYP) enzymes CYP1A1 and CYP1B1
and the phase II enzyme catechol-O-methyltransferaset
(COMT; Fig. 1). The oxidative estrogen metabolism path-
way begins with the conversion of E2 by CYP1A1 and
CYP1B1 into the catechol estrogens 2-OHE2 and 4-OHE2.
These same enzymes further oxidize the catechol estro-
gens to highly reactive estrogen quinones (E2-2,3-Q, E2-
3,4-Q), which can form Michael addition products with

deoxyribonucleosides. One of the quinones, E2-3,4-Q, has
been shown to cause depurinating estrogen-DNA
adducts and mutations in breast epithelium (9, 28). The
genotoxicity of oxidative estrogen metabolism is miti-
gated by COMT, which catalyzes the methylation of
catecholestrogens to methoxyestrogens (e.g., 4-methoxy-
estradiol, 4-MeOE2, as main fraction) thereby limiting the
catechol estrogens available for conversion to estrogen
quinones. Using experimentally determined rate con-
stants for these enzyme reactions (29–32), the model
allowed kinetic simulation of the conversion of E2 into
the main metabolites, such as 4-OHE2, the precursor for

Family
history

CYP1A1:h1,1/h1,2 CYP1A1
kcat1, km1
kcat2, km2

kcat1, km1
kcat2, km2

kcat1, km1
kcat2, km2

4-OHE2
production
(4-OHE2-AUC)

CYP1B1:h2,1/h2,2 CYP1B1

COMT:h3,1/h3,2 COMT

Haplotype configuration in silico Model

Proliferative
disease

Estrogen
concentration

Oral contraceptives
Hormone replacement Rx
Body mass index

HO
17ββ-estradiol = E2

2-OHE2

4-OHE2

4-MeOE2

E2-3,4-Q

HO

HO
CYP1A1
CYP1B1

CYP1B1

COMT

DNA adducts
HO

HO

OCH3

OH

OH O

O

Menarche,
menopause
parity

Reproductive and lifestyle factors

Estrogen exposure Age

Reaction
time

Figure 1. Genotypic–phenotypic model of estrogen metabolism and exposure (yellow box represents genotype component with phenotypic factors
outside). In the center is the estrogen metabolism pathway used to generate the in silico genotype model. The pathway is initiated by CYP1A1
and CYP1B1, which catalyze the oxidation of E2 to catechol estrogens 2-OHE2 and 4-OHE2. The catechol estrogens are either methylated by COMT to
methoxyestrogens (e.g., 4-MeOE2 as main fraction) or further oxidized by the CYPs to quinones, for example, E2-3,4-Q, the main quinone that
forms depurinating estrogen DNA adducts. Each of the 3 genes CYP1A1, CYP1B1, and COMT is genotyped for all subjects and the SNP genotype data
are used to derive the haplotype configuration for each subject. The model then uses the kinetic constants in a system of nonlinear differential
equations to calculate the production of the main carcinogenic estrogen metabolite, 4-OHE2, for each haplotype configuration as well as the weighted
average of all 4-OHE2 production values, using the probabilities of haplotype configurations as weights. The genotype model is influenced by traditional
risk factors, which are thought to affect hormone concentration (OC, HRT, and BMI) and exposure time (age, ages at menarche and menopause,
parity), as well as by FH of breast cancer and proliferative disease. The weight of each phenotypic factor on hormone concentration is determined by MLE.
Thus, the combined genotypic–phenotypic model allows the calculation of 4-OHE2 produced by each woman, expressed as 4-OHE2-AUC, for a
personalized risk estimate of developing breast cancer.

Estrogen Genotypic–Phenotypic Model of Breast Cancer Risk
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the mutagenic E2-3,4-Q. The simulations showed excel-
lent agreement with experimental results and provided a
quantitative assessment of the metabolic interactions.
Using rate constants of genetic variants of CYP1A1,
CYP1B1, and COMT, the model further allowed exam-
ination of the kinetic impact of enzyme polymorphisms
on the entire estrogen metabolic pathway. Furthermore,
the model identified those genetic variants in CYP1A1,
CYP1B1, andCOMT that produce the largest quantities of
catechols and quinones. Application of the model to a
breast cancer case–control population (221 invasive
breast cancer cases, 217 controls) defined the estrogen
quinone E2-3,4-Q as a potential breast cancer risk factor.
This exploratory analysis identified a subset of women at
increased breast cancer risk based on their enzyme iso-
form and consequent E2-3,4-Q production (27). These
results suggest that traditional breast cancer risk predic-
tion may be enhanced by incorporation of inherited
differences in estrogen metabolism (33).

Comparison of intra-tissue concentrations of estrogens
(E1, E2, E3), hydroxyestrogens (2-OHE1, 2-OHE2, 4-OHE1,
4-OHE2, and 16a-OHE1) and methoxyestrogens (2-
MeOE1, 2-MeOE2, 4-MeOE1, and 4-MeOE2) in normal
and malignant breast revealed the highest concentration
of 4-OHE2 in malignant tissue (34). The concentration (1.6
nmol/g tissue) determined by combined high-perfor-
mance liquid chromatography and gas chromatogra-
phy–mass spectrometry was more than twice as high
as that of any other compound. Such a high level in
neoplastic mammary tissue suggests a mechanistic role
of 4-OHE2 in tumor development. This is supported by
experimental evidence, which indicates that 4-catechol
estrogens are more carcinogenic than the 2-OH isomers.
Treatment with 4-OHE2, but not 2-OHE2, induced renal
cancer in Syrian hamster (35). Analysis of renal DNA
showed that 4-OHE2 significantly increased 8-hydroxy-
guanosine levels, whereas 2-OHE2 did not cause oxida-
tive DNA damage (36). In addition to the induction of
renal cancer in the hamster model, 4-OHE2 is capable of
inducing uterine adenocarcinoma, a hormonally related
cancer, in mice. Administration of E2, 2-OHE2, and 4-
OHE2 induced endometrial carcinomas in 7%, 12%, and
66% of treated CD-1 mice, respectively (14). Examination
of microsomal E2 hydroxylation activity in human breast
cancer showed significantly higher 4-OHE2/2-OHE2

ratios in tumor tissue than in adjacent normal breast
tissue, whereas the latter tissue samples contained 4-fold
higher levels of 4-OHE2 than normal tissue from benign
breast biopsies (6, 37).

In the present study, we applied our model to 2
independent, population–based case–control studies of
genetic breast cancer risk factors to validate and extend
prediction of the model. Furthermore, we incorporated
traditional risk factors into the model including age,
family history (FH) of breast cancer, body mass index
(BMI), use of hormone replacement therapy (HRT), and
use of oral contraceptives (OC). Thus, we developed a
more refined risk predictionmodel that integrates known

reproductive and lifestyle factors with predicted expo-
sure to oxidative estrogen metabolites as determined by
inherited variation in critical genes involved in the estro-
gen metabolism pathway. This new genotypic–phenoty-
pic model incorporates interactions between common
risk factors, each of low penetrance when considered
alone, but of greater attributable risk when considered
in synergistic combination. The combined genotypic–
phenotypic model led to the identification of high-risk
women.

Materials and Methods

Study populations
The participants of the population-based case–control

gene environment interaction and breast cancer (GEN-
ICA) study from the Greater Bonn Region, Germany,
were recruited between August 2000 and Septem-
ber 2004 as described previously (38, 39). In brief, there
are 1,143 incident breast cancer cases and 1,155 popula-
tion controls matched in 5-year age classes. Cases and
controls were eligible if they were of Caucasian ethni-
city, current residents of the study region, and below
80 years of age. Information on known and proposed
risk factors was collected via in person interviews.
The response rate for cases was 88% and for controls
67%. Characteristics of the study population regarding
potential breast cancer risk factors include age at diag-
nosis (< 50, � 50 years), menopausal status (premeno-
pausal, postmenopausal), breast cancer in mothers
and sisters (yes, no), OC (never, 0 < OC � 5, 5 < OC
� 10, OC > 10 years), HRT use (never, 0 < HRT � 10,
HRT > 10 years), and BMI (BMI < 20, 20 � BMI < 25,
25 � BMI < 30, BMI � 30). The GENICA study was
approved by the Ethics Committee of the University
of Bonn. All study participants gave written informed
consent. Genomic DNA was extracted from hepar-
inized blood samples (Puregene, Gentra Systems,
Inc.). DNA samples were available for 1,021 cases
(89%) and 1,015 controls (88%). Genotyping was con-
ducted by matrix-assisted laser desorption/ionization
time-of-flight spectrometry (MALDI-TOFMS) and PCR-
based fragment length polymorphism genotyping as
previously described (40). Phenotypic and genotypic
factors examined in the GENICA study are summarized
in Table 1. The GENICA data were used as training
set for the model.

The Nashville Breast Cohort (NBC) is an ongoing
retrospective cohort study of 16,946 women who under-
went a breast biopsy revealing benign parenchyma or
fibroadenoma at Vanderbilt, St. Thomas, and Baptist
Hospitals in Nashville, Tennessee since 1954 (41, 42).
Subjects provided written informed consent under
approved institutional review board protocols. To be
eligible for inclusion in this cohort, a woman could not
have had a diagnosis of breast cancer prior to her entry
biopsy. Additional details on the NBC are given else-
where (41, 42). Subjects were followed by telephone
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interviews or, if deceased, with their next of kin, through
medical record reviews, and through searches of the
National Death Index and the Tennessee Cancer Registry.
Successful follow-up has been obtained on 90% of the
women who met the entry criteria for the NBC and who
were biopsied before 1990. There were 8,897 Caucasian
women among this group whose entry biopsy formalin-
fixed, paraffin-embedded (FFPE) tissue blocks were
available and who were eligible for this study, of which
575 had developed breast cancer on follow-up. We con-
ducted a nested case–control study of women from this
subcohort who were postmenopausal at exit. We selected
2 controls per case from the risk set of those who had not
been diagnosed with breast cancer by the follow-up time
when their case developed this disease. These controls
were selected without replacement. Controls were
matched to cases by age and year of entry biopsy. Suc-
cessful DNA extractions from benign archival entry
biopsy specimens were conducted for 465 postmenopau-
sal Caucasian cases and for 885 of their matched controls.
The proportion of subjects with successful DNA extrac-
tions was 96%. We employed the Illumina GoldenGate
assay (Illumina) for genotyping, using 5 mL (� 250 ng) of
each extracted archival DNA. Each 96-well plate of DNA
genotyped contained an average of 4.2 (range 1–6) refer-
ence saliva DNA samples of study subjects for whom
DNA from matching blocks was under evaluation. This
enabled assessment of genotype accuracy. The concor-

dance rate for subject saliva DNA–FFPE DNA pairs was
99.95% to date, across 227,819 duplicate genotype pairs
(43). Drs. Page and Sanders conducted the histologic
review of patients’ entry biopsy slides using criteria of
the Cancer Committee of the College of American Pathol-
ogists, without knowledge of subsequent cancer outcome
(44–47).

Mathematical model for estrogen metabolism
pathway

For the purpose of the present study, we focused on the
principal reactions of the estrogen metabolism pathway
shown in Figure 1, starting with the oxidation of E2 to the
catechol estrogens 2-OHE2 and 4-OHE2 by CYP1A1 and
CYP1B1. The catechol estrogens are either methylated by
COMT to methoxyestrogens (e.g., 4-MeOE2) or further
oxidized by the CYPs to quinones, for example, E2-3,4-Q,
the main quinone that forms depurinating estrogen DNA
adducts. Because of its reactivity, E2-3,4-Q is short-lived
and cannot be readily measured. Instead we chose its
immediate precursor, 4-OHE2, because it is reliably quan-
tified and known to be carcinogenic (9). The reactions in
the pathway are modeled by a system of nonlinear
ordinary differential equations. We assume that each
reaction in the pathway,

Aþ E  ��!
k1

k2

C�!k3 Bþ E;

Table 1. Phenotypic and genotypic factors examined in GENICA and NBC

GENICA NBC

Available Categories Available Categories

Phenotypic factor
Age Yes continuous yes Continuous
Menopausal status Yes 2 yes 2
Menarche age Yes continuous yes Continuous
Menopausal age Yes continuous yes Continuous
Parity Yes continuous yes Continuous
Age at first birth Yes continuous yes Continuous
Primary family history Yes 2 yes 2
Body mass index Yes 4 yes 4
Hormone replacement therapy Yes 3 yes 5
Oral contraceptives Yes 4 yes
Proliferative disease No yes 3

Genotypic factor
CYP1A1

rs1799814 C/A Thr461Asn
rs1048943 A/G Ile462Val

CYP1B1
rs1056836 G/C Val432Leu
rs1800440 A/G Asn453Ser

COMT
rs4680 G/A Val108Met

Estrogen Genotypic–Phenotypic Model of Breast Cancer Risk
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is an enzymatic reaction from a reactant A to a product B
with E being the enzyme and C the AE complex. Because
the individual reaction rates, k1, k2, k3, are often difficult
to measure, we use the quasi-steady–state assumption:

db

dt
¼ kcatea

Km þ a
:

where a, b, and e are the concentrations of A, B, and E,
respectively, and kcat and Km are kinetic constants that
depend on k1, k2, and k3. Using these assumptions for each
reaction depicted in Figure 1, we have the following
system of nonlinear differential equations for the com-
ponents in the pathway.

dðE2Þ
dt
¼ � kcat1ECYP1B1E2

Km1 þ E2
� kcat2ECYP1A1E2

Km2
þ E2

� kcat3ECYP1B1E2

Km3
þ E2

;E2ð0Þ ¼ Eeffective
20

dð2-OHE2Þ
dt

¼ kcat2ECYP1A1E2

Km2
þ E2

þ kcat3ECYP1B1E2

Km3
þ E2

;

2-OHE2ð0Þ ¼ 0 ð1Þ
dð4-OHE2Þ

dt
¼ kcat1ECYP1B1E2

Km1 þ E2

� kcat5ECOMT4-OHE2

Km5
þ 4-OHE2

; 4-OHE2ð0Þ ¼ 0

The Michaelis–Menten parameters, kcat and Km, in the
model have been experimentallymeasured for each of the
3 enzymes, CYP1A1, CYP1B1, and COMT [(29–32) and

additional unpublished results]. The value of Eeffective
20

is

estimated for each patient as described below. As
described in our earlier publication, there are 2 common
nonsynonymous polymorphisms in CYP1A1 (codons 461
and 462), 4 in CYP1B1 (codons 48, 119, 432, and 453), and
1 in COMT (codon 108), giving rise to 4 alleles of CYP1A1,
16 of CYP1B1, and 2 of COMT, respectively (27). The
corresponding kcat and Km for wild-type and variant
enzymes for the pathway reactions are summarized in
Table 2. In the model, we combined the genotypic and
kinetic information to determine the amount of 4-OHE2

for each woman as summarized in Figure 1.
We do not have complete information about all

these SNPs for each woman in the 2 data sets under
consideration in this paper because CYP1B1 codons 48
and 119 were not assessed. To circumvent this limitation,
we extracted values of the kinetic parameters in Table 2
by using a nonlinear averaging procedure. To under-
stand the averaging algorithm, consider the reaction:

E2 ����!CYP1B1
4-OHE2 with 432Val-453Asn. The rate of for-

mation of 4-OHE2 is approximated by using the kinetic
parameters for each of the 4 CYP1B1 haplotypes (48Arg-
119Ala-432Val-453Asn, 48Gly-119Ala-432Val-453Asn,
48Arg-119Ser-432Val-453Asn, and 48Gly-119Ser-432Val-
453Asn) coupled with its frequency within the popula-
tion. Thus, reaction kinetics of the rate of 4-OHE2 pro-
duction from E2 for a woman with the 432Val-453Asn

genetic characterization is approximated by the differ-
ential equation:

dð4-OHE2Þ
dt

¼
p1

1:17ECYP1B1E2

23þE2
þ p2

6:00ECYP1B1E2

19þE2
þ p3

3:80ECYP1B1E2

10þE2
þ p4

1:78ECYP1B1E2

32þE2P4
i¼1

pi ð2Þ

where pi, i ¼ 1, 2, 3, 4, are the relative frequencies of
haplotypes in the population.With this method of assign-
ing the kinetic parameters for each woman, we can
numerically calculate the time trajectories of each com-
ponent of the metabolism pathway.

Another component of the model is the reaction time
(Treaction) over which the cumulative 4-OHE2 exposure
occurs. The model assumes that Treaction is a function
of the age at menarche (Amenarche), age at menopause
(Amenopause), and number of children (parity, P). To
capture these factors, we defined the effective time:
Treaction ¼ M1T where

M1 ¼
Amenopause � ðAmenarche þ PÞ

Amenopause

¼ 1� Amenarche þ P

Amenopause
� 1

and T ¼ 120. The form for M1 was chosen to reflect the
influence of ages of menarche and menopause and
the number of children on the exposure time to higher
levels of estrogen. In particular, as Amenarche increases,
Amenopause decreases and/or P increases, the exposure
time to high levels of estrogen during premenopause
decreases, leading to smaller 4-OHE2-AUC values. The
calculation of the averageAUCvaluewas then conducted
as the definite integral:

4-OHE2-AUC ¼ 1

Treaction

ðTreaction

0

4-OHE2ðtÞdt:

In the case of the premenopausal GENICA data, we
set Treaction ¼ T ¼ 120 min because these women do not
have an established age of menopause.

Effect of phenotypic risk factors on model
As depicted in Figure 1, we incorporated traditional

risk factors into the model by considering their effects
on 2 key components: (i) the initial estrogen level

E2 0ð Þ ¼ Eeffective
20

� �
and (ii) the reaction time over which

the 4-OHE2-AUC is calculated. The model uses both
categorical (e.g., FH) and quantitative (e.g., age of
menarche) inputs to calculate the AUC for each indi-
vidual. For example, the initial estrogen level is af-
fected by BMI, intake of OC or HRT, and FH. Each of
these covariates has several categories. In the GENICA
study of postmenopausal women these categories
for BMI were: (i) BMI < 20, (ii) 20 � BMI < 25,
(iii) 25 � BMI < 30, and (iv) BMI � 30; for HRT: (i) never,

Crooke et al.
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(ii) 0 � 10 years, and (iii) > 10 years; and for FH, the
presence or absence of a first degree FH of breast cancer.
The cumulative effect of more than 1 phenotypic
risk factor was assumed to be multiplicative. For
example, in the case of postmenopausal women, if
the multiplier for BMI is MBMI, the multiplier for HRT
is MHRT, and the multiplier for FH is MFH, then the
effective initial estrogen level for these 3 factors is:

Eeffective
20

¼MBMIMHRTMFHE20 . The value of E20 was cho-

sen to be 10, which is consistent with the initial estradiol
concentration that was used in the experiments to mea-
sure the kinetic constants (kcat and Km) in the estrogen
metabolism pathway. The multipliers for these 3 cate-

gories were determined by making them parameters in a
logistic regression model. Each multiplier has k possible
values (which we call weights). The number of weights
for each categorical variable is 1 less than the number of
categories for the variable. Hence, the total number of
weights for the 3 categorical variables (BMI, HRT, and
FH) is 3þ 2þ 1¼ 7. The dependent variable in this model
was the patient’s case–control status, whereas the mod-
el’s linear predictor was b0 þ b1fðxi;K;a1;a2; :::;a7Þ,
where xi denotes the ith patient’s genotype, age at either
cancer diagnosis or selection as a control, age of
menarche, age of menopause, reproductive history,
BMI, HRT and FH; K denotes a vector of enzyme kinetic

Table 2. Kinetic parameters for wild-type and variants of CYP1A1, CYP1B1, and COMT

Reaction Enzyme Allele kcat Km

E2 ! 2-OHE2 CYP1A1 461Thr-462Ile (wt*) 1.10 17
461Asn-462Ile 0.80 23
461Thr-462Val 2.70 18
461Asn-462Val 1.30 23

E2 ! 2-OHE2 CYP1B1 48Arg-119Ala-432Val-453Asn (wt) 1.30 45
48Gly-119Ala-432Val-453Asn 3.20 29
48Arg-119Ser-432Val-453Asn 2.30 18
48Arg-119Ala-432Leu-453Asn 2.30 73
48Arg-119Ala-432Val-453Ser 2.80 39
48Gly-119Ser-432Leu-453Ser 2.50 29
48Arg-119Ala-432Leu-453Ser 3.90 136
48Gly-119Ser-432Leu-453Asn 2.00 57
48Gly-119Ser-432Val-453Asn 2.00 64
48Gly-119Ser-432Val-453Ser 2.10 67
48Arg-119Ser-432Leu-453Asn 0.81 51
48Arg-119Ser-432Leu-453Ser 0.47 24
48Gly-119Ala-432Leu-453Ser 0.47 31
48Gly-119Ala-432Leu-453Asn 0.19 9.1
48Arg-119Ser-432Val-453Ser 0.65 36
48Gly-119Ala-432Val-453Ser 0.23 75

E2 ! 4-OHE2 CYP1B1 48Arg-119Ala-432Val-453Asn (wt) 1.17 23
48Gly-119Ala-432Val-453Asn 6.00 19
48Arg-119Ser-432Val-453Asn 3.80 10
48Arg-119Ala-432Leu-453Asn 1.85 37
48Arg-119Ala-432Val-453Ser 4.50 17
48Gly-119Ser-432Leu-453Ser 4.40 15
48Arg-119Ala-432Leu-453Ser 3.31 55
48Gly-119Ser-432Leu-453Asn 1.77 30
48Gly-119Ser-432Val-453Asn 1.78 32
48Gly-119Ser-432Val-453Ser 2.05 33
48Arg-119Ser-432Leu-453Asn 0.70 27
48Arg-119Ser-432Leu-453Ser 1.90 13
48Gly-119Ala-432Leu-453Ser 1.80 12
48Gly-119Ala-432Leu-453Asn 0.73 7.2
48Arg-119Ser-432Val-453Ser 2.70 17
48Gly-119Ala-432Val-453Ser 0.81 28

4-OHE2 ! 4-MeOE2 COMT 108Val (wt) 3.40 24
108Met 2.04 24
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constants; b0; b1;a1;a2; :::;a7 are model and regression
parameters; and fðxi;K;a1;a2; :::;a7Þ is the 4-OHE2-AUC
derived from our estrogen metabolism pathway model.
The 7 parameters a1;a2; :::;a7 are associated with the
categories for BMI, HRT and FH. Maximum likelihood
estimates (MLE) of these parameters are obtained from
our logistic regression model. For any set of arguments,
the value of the 4-OHE2-AUC function, f, is obtained by
solving the nonlinear system of differential equations (1)
for our estrogen metabolism pathway model. This com-
plicates the derivation of the MLEs of the model para-
meters because the gradient of the likelihood surface
cannot be written in closed form. To derive these esti-
mates we used a hybrid search method involving the
Neider–Mead method, differential evolution, and simu-
lated annealing (48–50) as implemented by Mathematica
(Version 7.0.1.0, Wolfram Research, Inc.). MLE optimiza-
tion did not include the experimentally determined
enzyme kinetic constants K nor age of menarche, age
of menopause, and effects of parity, which enter the
model through the definition of Treaction.

For the premenopausal GENICA data set, a similar
model was used except that OC usage (categorized as
never, 0 < OC � 5, 5 < OC � 10, OC > 10 years) was used
in place of HRT. Phenotypic weights and genotypic
factors for postmenopausal women in the NBC were
the same as those used in the GENICA postmenopausal
study, except that the parameters for HRT were reesti-

mated from the NBC data. We did this because the
NBC data has different categories of HRT usage: (0 �
HRT < 0.125, 0.125�HRT < 1, 1�HRT < 5, 5�HRT < 10,
HRT � 10 years). An additional model was tested
for postmenopausal NBC women in which their histories
of benign breast disease (no proliferative disease, pro-
liferative disease without atypia, and atypical hyper-
plasia) were included.

Statistical methods
In the GENICA study, cases and controls were fre-

quency matched by age. In the NBC, cases were indi-
vidually matched to controls based on their age at
entry biopsy and year of entry biopsy (43). For this
reason, we analyzed these data using regular logistic
regression for the GENICA data and conditional logis-
tic regression for the NBC. To adjust for residual con-
founding, these analyses were adjusted for age in the
GENICA study and age at entry biopsy and year of
entry biopsy in the NBC. Restricted cubic splines
were used to model the relationship between the log-
odds of breast cancer and the 4-OHE2-AUC values
adjusted for these residual confounding variables.
These analyses found no evidence of a nonlinear rela-
tionship between these 2 variables. For this reason
4-OHE2-AUC was entered directly into our regression
models without higher-order spline covariates. These
models were used in Figures 2 and 3 to plot the
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Figure 2. Application of model to
GENICA case–control study of
218 premenopausal cases, 213
premenopausal controls, 749
postmenopausal cases, and 758
postmenopausal controls. A, box-
and-whisker plots of 4-OHE2–

AUC values for cases (red) and
controls (blue). The boxes span
the 4-OHE2–AUC values from the
25th to 75th percentiles, the
vertical line within each box
indicates the median value.
Whiskers extend to the extreme
values or to 1.5 times the
interquartile range. Outliers
beyond the whiskers are plotted
individually. B, graph of breast
cancer ORs as a function of
4-OHE2–AUC values in
premenopausal women. The
denominator of these ORs are the
breast cancer odds associated
with a woman whose 4-OHE2-
AUC value equals the median
value for a premenopausal
control. C, the analogous OR
curve for postmenopausal
women.
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adjusted OR for developing breast cancer as a function
of 4-OHE2-AUC. The denominator of these OR curves
were women with 4-OHE2-AUC values equal to the
median 4-OHE2-AUC value among controls.
In the GENICA study there were no missing values for

any of the covariates used to derive the 4-OHE2-AUC. In
the NBC, multiple imputation was used to adjust for
missing covariates (51–53). The imputed calculations
used 1,354 women (465 cases, 885 controls) and complete
data was available on 345 women (111 cases, 234 con-
trols). Bootstrapping was used to estimate the CIs for the
OR curves in Figure 3.
In the GENICA cohort for both premenopausal and

postmenopausal patients, the distributions of 4-OHE2-
AUC values in cases and controls were compared using
the Wilcoxon rank-sum test. In the NBC, these distribu-
tions were compared using a multiply imputed t test (53).
The areas under receiver operating curves (ROC)

obtained from our models were derived using the trape-
zoidal rule. Ninety-five percent CIs for these areas were
estimated using the method of DeLong and colleagues
(54). All analyses were conducted using Stata version
11 (55).
Conventional and conditional logistic regressions

were used to assess the effects of the SNPs in our geno-
typic–phenotypic model on breast cancer ORs of women
in the GENICA and NBC studies, respectively. These

risks are adjusted for residual confounding in the same
way as in the analyses that produced Figures 2 and 3.
An additive model was used with 1 parameter per SNP.
The OR for each SNP is adjusted for the other SNPs in
the model and represents the breast cancer OR for
women with a heterozygous genotype relative to women
with a homozygous wild-type genotype. In this addi-
tive model, this OR also equals that of women with a
homozygous variant genotype relative to women who
are heterozygous.

Results

The model was applied to the GENICA study and
results are shown in Figure 2 for both premenopausal
and postmenopausal women. 4-OHE2-AUC values in
cases were significantly higher than in controls for
both pre- and postmenopausal women (Figure 2A).
Although the median curve areas were higher for cases
than controls in both pre- and postmenopausal sub-
jects, more marked differences were observed at higher
percentiles. For example, the 75th percentiles of 4-OHE2-
AUC values in premenopausal cases and controls were
2.03 and 1.73, respectively, whereas for postmenopausal
women they were 1.00 and 0.901, respectively. Figure 2B
and C show how breast cancer ORs increase with increas-
ing 4-OHE2-AUC values in pre- and postmenopausal

Figure 3. Application of model
to postmenopausal women from
the Nashville Cohort study of 465
cases and 885 controls. A,
box-and-whisker plot
4-OHE2-AUC values for cases and
controls (see Figure 2 for
additional explanation). B and D,
graphs of breast cancer ORs as a
function of 4-OHE2-AUC values in
postmenopausal women. The
denominator of these ORs is
the breast cancer odds
associated with a woman whose
4-OHE2-AUC value equals the
median value for a
postmenopausal control. Graphs
B and C use 4-OHE2-AUC models
that exclude and include,
respectively, each patient's
history of benign proliferative
breast disease.
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women, respectively. These graphs are adjusted for age
and are derived with respect to women with 4-OHE2-
AUC values equal to the median value for control sub-
jects (1.32 and 0.575 for pre- and postmenopausal women,
respectively). Premenopausal women at the 90th percen-
tile of 4-OHE2-AUC among control subjects had a risk of
breast cancer that was 2.30 times that of women at the
10th control 4-OHE2-AUC percentile (95%CI: 1.7–3.2, P¼
2.9� 10�7). This relative riskwas 1.89 (95%CI 1.5–2.4, P¼
2.2 � 10�8) in postmenopausal women.

Parameter estimates obtained from the GENICA post-
menopausal model were used to test this model on
postmenopausal women from the NBC. (There were
insufficient premenopausal women in the NBC to sepa-
rately assess the effects of 4-OHE2-AUC in these patients.)
Models were run that either included or excluded a
history of benign proliferative disease. Figure 3 shows
the results of these analyses. The top boxplots in Figure
3A and the plot in Figure 3B were derived from a model
that excluded a history of benign proliferative disease.
In the bottom boxplots of Figure 3A and in the plot in
Figure 3C, this history was included in the model. In the
NBC, this relative risk in postmenopausal women was
1.81 (95% CI: 1.3–2.6, P ¼ 7.6 � 10�4), which increased
to 1.83 (95% CI: 1.4–2.3, P ¼ 9.5 � 10�7) when a history of
proliferative breast disease was included in the model.
Table 3 shows the ORs associated with the 5 genotypic
components of our model in pre- and postmenopausal
women from the GENICA study and in postmenopausal
women from the NBC. None of these ORs were signifi-
cantly different from one.

Discussion

We present a genotypic–phenotypic model for breast
cancer risk prediction, which incorporates the main
components of mammary estrogen metabolism, enzyme
variants, and traditional risk factors related to estrogen
exposure. In contrast to the relatively small number of
functional studies of estrogen metabolism, multiple
epidemiologic studies have investigated breast cancer
risk in relation to genetic variation in the critical
enzymes involved in estrogen metabolism with incon-
sistent findings (56, 57). Such studies were limited by
their ability to consider only 1 or 2 of the enzymes in the
estrogen metabolic pathway. Even those studies that
examined all of the component enzymes were not able
to assess underlying metabolic interactions in the path-
way (38, 58–60). The drawback of any purely genetic
assessment is the lack of consideration about functional
interactions inherent in complex metabolic pathways
such as the estrogen metabolism pathway. A pathway-
based functional and quantitative approach is necessary
to overcome the current limitation in genotype assess-
ment (61). Our original estrogen metabolism pathway-
based model (27) not only combined kinetic and genetic
data, but also provided the opportunity to incorporate
traditional risk factors tied to estrogen exposure. In
attempting to answer the important question how best
to incorporate these risk factors into our kinetic–genetic
model, we were guided by biological reasoning, experi-
mental data, and epidemiologic findings. We chose the
2 principal components of the model, namely estrogen

Table 3. Effect of individual genotypic factors on breast cancer ORs in the GENICA and NBC populations

Gene SNP OR 95% CI P

GENICA
Premenopausal women

CYP1A1 rs1799814 1.20 (0.61–2.37) 0.61
rs1048943 0.52 (0.24–1.13) 0.10

CYP1B1 rs1056836 1.17 (0.88–1.56) 0.27
rs1800440 1.36 (0.93–1.99) 0.12

COMT rs4680 0.97 (0.75–1.26) 0.82
Postmenopausal women

CYP1A1 rs1799814 0.75 (0.53–1.07) 0.11
rs1048943 0.89 (0.61–1.31) 0.57

CYP1B1 rs1056836 1.02 (0.87–1.20) 0.77
rs1800440 1.07 (0.87–1.32) 0.50

COMT rs4680 0.93 (0.81–1.07) 0.32
NBC
Postmenopausal women

CYP1A1 rs1799814 1.16 (0.82–1.64) 0.41
rs1048943 1.10 (0.75–1.63) 0.62

CYP1B1 rs1056836 1.08 (0.90–1.29) 0.40
rs1800440 1.01 (0.79–1.28) 0.97

COMT rs4680 0.98 (0.83–1.16) 0.86
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level and reaction time, to connect to the traditional risk
factors (Figure 1).
It is obvious that the estrogen level is increased in

women receiving exogenous estrogens in form of OC
or HRT. Moreover, there is general agreement that the
risk associated with OC and HRT depends on the dura-
tion of exposure, being lowest in women who never used
OC or HRT (62). In the United States, the most commonly
prescribed HRT is Premarin, a complex mixture of estro-
gens, in particular the equine estrogens equilin and
equilenin, which differ structurally from E2 and E1 by
having an unsaturated B ring. The amount of human
estrogens is much lower, for example, E2 accounts for
only 1.5% of estrogens present in Premarin (63). Despite
the structural difference, equine estrogens are metabo-
lized by CYP1B1 and CYP1A1 to the catechol 4-OH-
equilenin, which contains aromatic A and B rings. Like
4-OHE2, 4-OH-equilenin is further metabolized to its
quinone, and cell culture experiments showed that 4-
OH-equilenin via its quinone induced DNA damage in
breast cancer cell lines and cellular transformation in vitro
(64, 65). Thus, all estrogens including equine estrogens
used in HRT are metabolized via the same CYP-mediated
oxidative pathway to generate catechols and quinones,
which, in turn, cause DNA damage. However, equine
estrogens appear to be metabolized less efficiently than
human estrogens, which may explain why Premarin
seems to have a weaker effect on risk of breast cancer
than endogenous E2. HRT and OC were documented in
both GENICA and NBC, although specific issues, such as
timing of exposure (e.g., age at first use, time since first
use, time since last use) were not recorded and therefore
could not be addressed in our model. In general, it
was our intent in designing the model to capture each
risk factor without attempting to specify every possible
subgroup.
Besides input from exogenous OC and HRT, a variety

of other factors influence the estrogen concentration,
especially body weight and exercise. The Endogenous
Hormones and Breast Cancer Collaborative Group con-
cluded that the increase in breast cancer risk with increas-
ing BMI among postmenopausal women was largely the
result of the associated increase in estrogens (66). Because
of the importance of body weight and obesity, we
included BMI as an integral component into the model
utilizing data available in the GENICA and NBC groups.
Exercise has also a well-known effect on estrogen con-
centration and breast cancer risk, especially in postme-
nopausal women (67). We did not include exercise in the
model because neither GENICA nor NBC had collected
exercise data. If such data were available in another study
population, we could readily integrate exercise as a
phenotypic factor into a future model via its effect on
estrogen concentration.
Family history of breast cancer is associated with 10%

to 20% of breast cancer cases and within that group
approximately one half (5%–10% of all cases) are strongly
hereditary, for example, linked to germline mutations in

genes such as BRCA1 and BRCA2 (68). It has been recog-
nized that BRCA1 and BRCA2 mutations exhibit variable
penetrance, which is likely accounted for by other sus-
ceptibility genes among carriers (69). Thus, FH results
from the combined input of high- and low-penetrance
genes. There were no known patients with BRCA1 or
BRCA2 mutations in either GENICA or NBC. To reflect
FH, we used a weighting factor,MFH, to optimize separa-
tion of cases and controls.

Benign breast disease encompasses a spectrum of his-
tologic entities, usually subdivided into nonproliferative
lesions, proliferative lesions without atypia, and atypical
hyperplasia (41, 70). Analysis of the original NBC showed
that the latter 2 types of lesions have clinically significant
premalignant potential (41). In a more recent study of
9,087 women followed for a median of 15 years, the
relative risk of breast cancer associated with proliferative
changes without atypia was 1.88 (95% CI: 1.66–2.12)
and increased for atypical hyperplasia to 4.24 (95%
CI: 3.26–5.41; ref. 70). As expected, the inclusion of pro-
liferative disease as a risk factor in our model improved
risk prediction for the NBC and the model showed a
progressive risk increase for proliferative disease without
atypia and atypical hyperplasia compared with the
absence of proliferative lesions.

Figure 3B and C should be compared with Figure 2C.
The OR curves from the NBC in Figure 3 were derived
using the weights for BMI and FH derived from the
GENICA data set. There are 9 parameters in the GENICA
model that are being fit to the data and there are over
200 premenopausal cases and controls and over 700
postmenopausal cases and controls. This gives us over
20 premenopausal and over 70 postmenopausal cases
and controls per parameter. Typical rules of thumb are
that you should have 20 or more cases and controls per
parameter to avoid overfitting (71). Hence, model over-
fitting should not be serious concern, particularly for the
postmenopausal women. In the postmenopausal GEN-
ICA women, the breast cancer odds associated with
women at the 90th control 4-OHE2-AUC percentile was
1.89 times that of women at the 10th control 4-OHE2-AUC
percentile. This OR was reduced to 1.81 (a 4% reduction)
in postmenopausal NBC women using the model that
excluded proliferative disease. Hence, the test set analysis
of the NBC women provides considerable validation of
the GENICAmodel for postmenopausal women. Adding
a history of proliferative disease to the 4-OHE2-AUC
model (Figure 3C) changes the range of 4-OHE2-AUC
values and increases the level of statistical significance
but does not greatly affect the ORs associated with
equivalent percentile values. For example, adding a pro-
liferative disease, history increases the 90th versus 10th
4-OHE2-AUC percentile OR from 1.81 to 1.83. In marked
contrast to Figure 2B and C, Figure 3B and C and Table 3
shows no evidence of elevated breast cancer risk asso-
ciated with the SNPs in our genotypic–phenotypic
model. It is thus plausible that the variation in breast
cancer risk shown in these figures is because of variation
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in the patient’s 4-OHE2-AUC rather than to variation in
the individual SNPs that are used in this model.

Several models are currently available to predict the
risk of breast cancer, of which the Claus and Gail models
are used most often (22, 26). The Claus model, which is
based on assumptions of the prevalence of high-pene-
trance genes for susceptibility to breast cancer, is only
applicable for womenwith a FH of breast cancer (23). The
Gail model incorporates primary and secondary FH as
well as the age at menarche, the age at first live birth, the
number of breast biopsies, the presence of atypical hyper-
plasia in these biopsies, and race (21, 24). Both of these
models were developed on the basis of data from much
larger study populations than the 2 study groups avail-
able to us. The advantage of our genotypic–phenotypic
model is the underlying biologic reasoning inherent in a
pathway-based model and the integration of endogenous
and exogenous risk factors.

In a recent study, Wacholder and colleagues (72)
reported that the Gail model achieves an area under
the ROC of 0.534. The addition of 7 SNPs associated with
breast cancer increased the ROC to 0.586. We used the
NBC, which includes information on most of the risk
categories of the Gail model, that is, patient age, age at
menarche and first birth, number of biopsies, presence of
atypical hyperplasia in these biopsies, and FH (21, 24) for
a direct comparison of our new model with the Gail
model. The area under the ROC curve associated with
our 4-OHE2-AUC model that includes proliferative dis-
ease was 0.588 (95% CI: 0.56–0.62). This was slightly
greater than, but not significantly different from that
associated with the Gail model 0.558 (95% CI: 0.53–
0.59). Hence, while these models can identify women
at increased breast cancer risk, none of them are parti-
cularly effective at predicting who will develop breast
cancer.

A shortcoming of our current model is the omission of
functional SNPs outside the coding region and the inclu-
sion of only 3 genes, albeit of primary importance for
mammary estrogen metabolism. Another important
gene, CYP19A1, encodes aromatase, the main enzyme
producing E2 and E1 from androgen precursors. Haplo-
type-tagging SNPs and common haplotypes spanning
the coding and proximal 50 region of CYP19A1 were
shown to be significantly associated with a 10% to 20%
increase in endogenous estrogen levels in postmenopau-
sal women (73). The future addition of CYP19A1 in form
of haplotype-tagging SNPs would extend the range of
our model by including information about the input E2

concentration to be converted by CYP1A1, CYP1B1, and
COMT to carcinogenic metabolites. Among the phase II
conjugating enzymes, COMT is the sole methylating
enzyme, whereas there are potentially 3 glutathione
(GSH)-conjugating enzymes, GSTA1, GSTM1, and
GSTP1. COMT catalyzes the methylation of catechol
estrogens to methoxy estrogens, which lowers the cate-
chol estrogens available for conversion to estrogen qui-
nones. In turn, the estrogen quinones undergo

conjugation with GSH via the catalytic action of glu-
tathione S-transferases (GST). The formation of GSH-
estrogen conjugates would reduce the level of estrogen
quinones and thereby lower the potential for DNA
damage. Based on protein levels, GSTP1 is the most
important member of the GST family expressed in breast
tissue (74). The 2 other GST isoforms, GSTM1 and
GSTA1, are expressed at lower levels. In fact, about
50% of Caucasian women possess the GSTM1 null gen-
otype and therefore completely lack GSTM1 expression
in all tissues including breast (75). Based on these con-
siderations, we cloned wild-type GSTP1 cDNA and
prepared the purified, recombinant enzyme to assess
its role in the estrogen metabolic pathway. We showed
that GSTP1 converted the estrogen quinones into estro-
gen-GSH conjugates (31). Several nonsynonymous
GSTP1 polymorphisms have been described with altered
catalytic activity toward polycyclic aromatic hydrocar-
bon carcinogens (76, 77). With regard to estrogen sub-
strates, it is presently unknown whether the variants
differ from wild-type GSTP1 in their ability to convert
carcinogenic estrogen quinones to nontoxic estrogen-
GSH conjugates. In future experiments, we could deter-
mine the kinetic rate constants for the variant GSTP1
isoforms and utilize them to account for genetic differ-
ences between women in the production of these non-
carcinogenic estrogen metabolites.

Another limitation of our model is the lack of actual
estrogen metabolite measurements. However, it would
be difficult if not impractical to obtain a sufficient number
of samples to truly reflect awoman’s lifetime endogenous
and exogenous estrogen exposure. Thus, we derived the
overall exposure by taking into account her total years of
ovulation as a function of current age, age at menarche,
age at menopause, numbers of full-term pregnancies, and
the use of OC andHRT. Our estimates could be improved
by taking into account genetic information related to the
CYP19A1 gene, which encodes aromatase as sole enzyme
producing the parent estrogens E2 and E1. As mentioned
above, certain CYP19A1 haplotypes were shown to be
associated with increased endogenous estrogen levels in
postmenopausal women (73).

In a discussion of mathematical modeling, A.M. Turing
wrote: "This model will be a simplification and an idea-
lization, and consequently a falsification. It is to be hoped
that features retained for discussion are those of greatest
importance in the present state of knowledge." (78) The
genotypic–phenotypic approach to modeling reflects this
paradigm. The model contains different facets that can be
manipulated to strengthen its predictive powers. Further-
more, its flexibility allows one to change the metabolism
pathway and/or the phenotypic parameters. For exam-
ple, incorporation of additional enzymes (e.g., CYP19A1,
GSTP1) and their variants into the pathway is easily
accomplished by adding suitable differential equations
with appropriate kinetic constants to the set of differ-
ential equations of the metabolism pathway. Similarly, if
another phenotypic parameter became available (e.g.,
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alcohol consumptionwith categorical data), it could read-
ily be incorporated into the model. Regular alcohol con-
sumption has been linked to an increase in breast cancer
risk. A meta-analysis of 98 studies showed an excess risk
of 22% for drinkers versus nondrinkers with a dose–
response relationship among women who drink moder-
ate to high levels of alcohol (79, 80). Thus, the relationship
between alcohol and breast cancer appears to be causal
but the mechanism for this association is not well under-
stood. One potential mechanism is the influence of alco-
hol intake on estrogen metabolism. Animal experiments
have shown that ethanol consumption increases hepatic
aromatase activity, which, in turn, could increase the
conversion of androgens to estrogens (81). Indeed, sev-
eral studies observed a positive correlation between
alcohol intake in women and both blood and urinary
estrogen concentrations but other studies found no cor-
relation or even an inverse association (82, 83). However,
postmenopausal women receiving HRT experienced a
significant and sustained increase in circulating estrogen
following ingestion of alcohol (84). Women drinking
20 g/day or more and who used HRT had an increased
risk of breast cancer (RR 2.24; 95% CI: 1.59–3.14) com-
pared with nondrinkers who never used HRT (85). In
light of the latter association, the model could be refined
by inclusion of alcohol consumption in the subgroup of
women who received HRT. Other, seemingly unrelated,
factors can also be tied into the AUCmodel. For example,
because the genotypic–phenotypic model is based on the
formation of DNA adducts in the estrogen metabolism
pathway, a dynamic system (a submodel) for the enzy-
matic repair of these adducts can be integrated into the
model (86). This would permit one to investigate women
who have the genetic machinery that produces high
4-OHE2-AUC values and their accompanying risk, but
have effective DNA repair machinery, thusmitigating the
breast cancer risk. This flexibility allows us, as stated
above by Turing, to experiment with themodel by adding
and/or removing components to enhance its ability to
predict breast cancer risk.

In summary, the current study presents a model for the
prediction of breast cancer risk that incorporates the
mammary estrogen metabolism pathway, genetic
enzyme variants, and traditional risk factors related to
estrogen exposure. The model was applied to 2 separate
case–control studies and has the potential to give a
personalized risk estimate to allow more targeted screen-
ing and possibly earlier diagnosis and treatment of the
disease.
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